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We use a spatial epidemic model with demographic and
geographical heterogeneity to study the regional dynamics of
COVID-19 across 133 regions in England. Our model
emphasizes the role of variability of regional outcomes and
heterogeneity across age groups and geographical locations,
and provides a framework for assessing the impact of policies
targeted towards subpopulations or regions. We define a
concept of efficiency for comparative analysis of epidemic
control policies and show targeted mitigation policies based
on local monitoring to be more efficient than country-level or
non-targeted measures. In particular, our results emphasize
the importance of shielding vulnerable subpopulations and
show that targeted policies based on local monitoring can
considerably lower fatality forecasts and, in many cases,
prevent the emergence of second waves which may occur
under centralized policies.
1. Overview
The novel coronavirus pandemic of 2019–2021 has led to disruption
on a global scale, leading to more than 1.4 million deaths worldwide
at the time of writing, and prompted the implementation of
government policies involving a variety of ‘non-pharmaceutical
interventions’ [1] including school closures, workplace restrictions,
restrictions on social gatherings, social distancing and, in some
cases, general lockdowns for extended periods. This has led to a
range of different public health policies across the world, and the
efficiency of specific policy choices has been subject to much debate.

While the nature of these restrictions has been justified by the
severe threat to public health posed by the virus, their design and
implementation necessarily involves a trade-off, often implicit in
the decision-making process, between health outcomes and the
socio-economic impact of such social restrictions.
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An important feature of the COVID-19 pandemic has been the heterogeneity of epidemic dynamics and
the resulting mortality across different regions, age classes and population categories. The importance of
these heterogeneities suggests that homogeneous models—often invoked in discussions on reproduction
number and herd immunity—may provide misleading insights, and points to the need for more
granular modelling to take into account geographical, demographic and social factors which may
influence epidemic dynamics.

We propose a flexible modelling framework which can serve as a decision aid to policy-makers and
public health experts by quantifying this trade-off between health outcomes and social cost. Using a
structured population model for epidemic dynamics which accounts for geographical and demographic
heterogeneity, we formulate this trade-off as a control problem for a partially observed distributed
system and provide a quantitative framework for comparative analysis of various mitigation policies. We
illustrate the usefulness of the framework by applying it to the study of COVID-19 dynamics across
regions in England and showing how it may be used to reconstruct the latent progression of the
epidemic and perform a comparative analysis of various mitigation policies through scenario projections.

Several recent studies have used homogeneous compartmental models [2–9] or age-stratified versions
of such models [10–15] to analyse the dynamics and impact of the COVID-19 epidemic in various
countries. Our framework, while compatible with such homogeneous models at aggregate level,
accounts for demographic and spatial heterogeneity in a more detailed manner, leading to regional
outcomes which may substantially deviate from homogeneous models. Similar, though somewhat less
detailed, heterogeneous models have been recently used to study COVID-19 outbreaks by Danon et al.
[16] for the UK, Birge et al. [17] for New York City and Roques et al. [18] for France.

We first present below an overview of the main features of our approach and the key findings, before
going into more detail on the methodology and results.
1.1. Methodology
We formulate a stochastic compartmental (SEIAR) epidemic model with spatial and demographic
heterogeneity (age stratification) for modelling the dynamics of the COVID-19 epidemic and apply
this model to the study of COVID-19 dynamics across regions in England.

The model takes into account:

— epidemiological features estimated by previous studies on COVID-19;
— the lack of direct observability of the total number of infectious cases and the presence of a

non-negligible fraction of asymptomatic cases;
— the demographic structure of UK regions (age distribution, density);
— social contact rates across age groups derived from survey data;
— data on inter-regional mobility; and
— the presence of other random factors, not determined by the above.

We first demonstrate that this model is capable of accurately reproducing the early regional dynamics of
the disease, both pre-lockdown and a month into lockdown, using a detailed calibration procedure that
accounts for demographic heterogeneity across regions, low testing rates, and existence of asymptomatic
carriers. The calibration reveals interesting regional patterns in social contact rates before and during
lockdown.

Underlying any public health policy is a trade-off between a health outcome—which may relate to
mortality or hospitalizations—and the socio-economic impact of measures taken to mitigate the
magnitude of the impact on public health. We present an explicit formulation of this trade-off and use
it to perform a comparative analysis of various ‘social distancing’ policies, based on two criteria:

— the benefit, in terms of reduction in projected mortality; and
— the cost, in terms of restrictions on social contacts.

The goal of our analysis is to make explicit the policy outcomes for decision-makers, without resorting to
(questionable) concepts such as the ‘economic value of human life’ used in some actuarial and economic
models [6,9,10].

In our comparative analysis, we consider a broad range of policies and pay particular attention to
population-wide versus targeted mitigation policies, feedback control based on the number of observed
cases. We introduce a concept of efficient policy, and show how this concept allows to identify
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decision parameters which lead to the most efficient outcomes for each type of mitigation policy. The
granular nature of our model, together with validation based on epidemiological data, provide a more
detailed picture of the relative merits of various public health policies.
 lsocietypublishing.org/journal/rsos

R.Soc.Open
Sci.8:201535
1.2. Summary of findings
Our first set of results concerns the reconstruction of the progression of the pandemic in England, in
particular its latent spread through asymptomatic carriers.

— Using a baseline epidemic model consistent with epidemiological data and observations on fatalities and
cases reported in England up to June 2020, we estimate more than 17.8 million persons in England
(31.7% of the population) to have been exposed to COVID-19 by 1 August 2020. These estimates are
much higher than numbers discussed in media reports, based on the number of reported cases.

— Based on a comparison of fatality counts and reported cases, we infer that less than 5% of cases in
England had been detected prior to June 2020. This low detection probability implies in particular
that the number of reported cases may severely underestimate the latent progression of the epidemic.

— We observe significant differences in epidemic dynamics across regions in England, with higher
fatality and contagion levels in northern regions compared to southern regions, both before and
during the lockdown period, pointing to the importance of demographic and geographical
heterogeneity for modelling the impact of COVID-19.

After calibrating the model to replicate the regional progression of COVID-19 in England for the period
1 March to 31 May 2020, we use it for scenario projections under various mitigation policies.
Comparative analysis of mitigation policies reveals that measures targeting subpopulations—such as
regions with outbreaks—are more efficient than population-wide measures in terms of the trade-off
between health outcomes and social cost. More specifically:

— Shielding of elderly populations is by far the most effective single measure for reducing the number
of fatalities.1

— By contrast, school closures and workplace restrictions are seen to be less effective than social
distancing measures outside of school and work environments.

— Adaptive policies (feedback control) which trigger measures when the number of daily observed
cases exceed a threshold, are shown to be more effective than pre-planned policies, leading to a
substantial improvement in health outcomes.

— A decentralized policy which triggers regional confinement measures based on regional daily
reported cases is found to be more efficient than centralized policies based on national indicators,
resulting on average in an overall reduction of 20 000 in fatalities and, in many cases, significant
damping of a ‘second wave’.

— Comparative analysis of policies (table 10) shows a wide range of health outcomes. The most effective
policy in terms of reducing fatalities involves triggering of regional confinement measures based on
monitoring of new cases, coupled with shielding of elderly populations.

Parameter uncertainty is an important issue in epidemic modelling. We perform robustness checks with
respect to parameter uncertainty for various model parameters, most notably the symptomatic ratio and
the infection rates, and show our policy comparisons to be robust with respect to various assumptions on
these parameters.

The present work should be seen as an illustration of what may be done using our methodology,
rather than an exhaustive analysis of different policy options and scenarios. We have made available
an online implementation of the model, which may be used to explore other scenarios and policies
than those presented below: http://covid19.kotlicki.pl.
1.3. Outline
The modelling framework is described in §2. Data sources and parameter estimations are detailed in §3.
Section 4 highlights the implications of partial observability of state variables and the associated model
uncertainty.
1We do recognize that the implementation of such shielding measures may be extremely challenging in practice.

http://covid19.kotlicki.pl
http://covid19.kotlicki.pl
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The outcomes of various epidemic control policies are then discussed in §§5 and 6. Pre-planned policies
are discussed in §§5.1 and 5.2, while §6 discusses adaptive (feedback) control policies, in whichmeasures are
triggered when the estimated number of new reported cases exceeds a threshold, and concludes with a
comparative analysis of health outcomes and social cost of various types of mitigation policies.
ietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:201535
2. Modelling framework
To take into account the role of geographical and demographic heterogeneity, we use a stochastic
compartmental (SEIAR) model with age stratification, mobility across sites, social contact across age
stratification, and the impact of asymptomatic infected individuals. For general concepts on
deterministic and stochastic compartmental models, we refer to Anderson & May [19], Brauer &
Castillo-Chavez [20], Britton et al. [21], Lloyd & Jansen [22].

2.1. State variables
We consider a regional metapopulation model with K regions labelled r = 1,…, K. Each region r has a
population N(r) which is further subdivided into M age classes labelled a [ {1, 2, 3, 4, ::: , M}. We
denote N(r, a) the population in region r in age category a, with

PM
a¼1 N(r, a) ¼ N(r).

Individuals in each region and age group are categorized into six compartments:

— Susceptible (S) individuals who have not yet been exposed to the virus.
— Exposed (E) individuals who have contracted the virus but are not yet infectious. Exposed individuals

may then become infectious after a certain incubation period.
— Infectious (I) individuals who manifest symptoms.
— Asymptomatic (A) infectious individuals.
— Recovered (R) individuals. In line with current experimental and clinical observations on COVID-19,

we shall assume that individuals who have recovered have temporary immunity, at least for the
horizon of the scenarios considered, and cannot be re-infected [23].

— Deceased (D) individuals.

The progression of the disease in the population is monitored by keeping track of the respective number

St(r, a), Et(r, a), It(r, a), At(r, a), Rt(r, a) and Dt(r, a)

of individuals in each compartment. As the model focuses on the dynamics of the epidemic over a short
period (1000 days), we neglect demographic changes over this period and assume that the population
size N(r, a) in each location and age group is approximately constant, that is

St(r, a)þ Et(r, a)þ It(r, a)þ At(r, a)þ Rt(r, a)þDt(r, a) ¼ N(r, a)

is constant.

2.2. A metapopulation SEIAR model
When each subpopulation (r, a) is large and homogeneous, the dynamics of state variables may be
described through the following system of equations, represented in figure 1:

_St(r, a) ¼ �lt(r, a) St(r, a),

_Et(r, a) ¼ lt(r, a) St(r, a)� bEt(r, a),

_It(r, a) ¼ pabEt(r, a)� gIt(r, a),

_At(r, a) ¼ (1� pa)bEt(r, a)� gAt(r, a),

_Dt(r, a) ¼ gfaIt(r, a),

_Rt(r, a) ¼ g(1� fa)It(r, a)þ gAt(r, a)
and N(r, a) ¼ St(r, a)þ At(r, a)þ Et(r, a)þ It(r, a)þ Rt(r, a)þDt(r, a),

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(2:1)

where

— β is the incubation rate, and 1/β is the average incubation period;
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Figure 1. Epidemic dynamics.
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— γ is the rate at which infectious individuals recover;
— 0 < pa < 1 is the probability for an infected individual in age group a to develop symptoms;
— fa is the infection fatality rate for age group a, representing the probability that an infected individual

in age group a dies from the disease; and
— the force of infection λt(r, a), which measures the rate of exposure at location r for age group a, is given by

lt(r, a) ¼
X
a0�W

sr
a,a0 (t)

a1(a0)kIt(r, a0)þ a0(a0)At(r, a0)
N(r, a0)

þ
X
a0[W

sr
a,a0 (t)

XK
r0¼1

Mr,r0 (t)
a1(a0)kIt(r0, a0)þ a0(a0)At(r0, a0)

N(r0, a0)
, (2:2)

where 0 < α1(a) < 1 (resp. α0(a)) is the infection rate per contact, i.e. the probability of infection
conditional on contact for symptomatic (resp. asymptomatic) with individuals in age group a.

In the absence of reliable data on asymptomatic carriers, it is difficult to estimate α0. We will use as
baseline model the case α1 = α0 = α, and examine the impact of heterogeneous infection rates α1(a) > α0(a)
in §§3 and 5.

The force of infection in each subpopulation (r, a) depends on the rate of contact with (infected)
individuals in other subpopulations, which differentiates this model from a homogeneous model.
These interactions occur through:

— Contacts across age groups in the same region: the term sr
a,a0 (t) represents the average number of persons

from age class a0 encountered per day by a person from age class a in region r on a day t. For
infectious individuals with symptoms, we assume a lower contact rate κσ < σ due to (partial) self-
isolation (quarantine effect). This leads to the first term in (2.2).

— Inter-regional mobility: the second term in (2.2) corresponds to contacts between individuals in region r
and age class a and those in the working population (age classes a0 [ W) commuting from other
regions r0 ≠ r. Mr,r0 (t) represents the proportion of individuals from region r0 among the population
of adults at a location r at date t.

2.3. Stochastic dynamics
The deterministic dynamics (2.1) ignores the variability of outcomes [24] due to random factors not taken
into account in the model. To account for this variability of outcomes, we model the variables (S(t), E(t),
I(t), A(t)) as a continuous-time Markov point process [21,25] defined through its transition rates
conditional on the history Ht up to date t

P(DSt(r, a) ¼ �1jHt) ¼ �lt(r, a) St(r, a)Dtþ o(Dt)
P(DEt(r, a) ¼ 1jHt) ¼ lt(r, a) St(r, a)Dtþ o(Dt)
P(DEt(r, a) ¼ �1jHt) ¼ bEt(r, a)Dtþ o(Dt)
P(DIt(r, a) ¼ 1jHt) ¼ pabEt(r, a)Dtþ o(Dt)
P(DIt(r, a) ¼ �1jHt) ¼ gIt(r, a)Dtþ o(Dt)

P(DAt(r, a) ¼ þ1jHt) ¼ (1� pa)bEt(r, a)Dtþ o(Dt)
P(DAt(r, a) ¼ �1jHt) ¼ gAt(r, a)Dtþ o(Dt)

and P(DDt(r, a) ¼ 1jHt) ¼ fagIt(r, a)Dtþ o(Dt) (2:3)
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The stochastic dynamics (2.3) are consistent with the deterministic dynamics of (2.1) for large
populations, in the sense that the population fractions represented by each compartment converge to
those represented by the solution of (2.1) as minr N(r) increases. However, even when the overall
population is large, the stochastic dynamics (2.3) can substantially deviate from the deterministic
model (2.1), especially in small subpopulations and in the early phases of the epidemic when the
number of infected individuals in each region may be small, leading to random flare-ups and
breakouts not present in the deterministic model. In the sequel, we use the stochastic model (2.3) for
the dynamics of the state variables.
 .org/journal/rsos

R.Soc.Open
Sci.8:201535
2.4. Policies for epidemic control
Social distancing policies (and lockdowns) affect epidemic dynamics by influencing (lowering) the social
contact rates sr

ij and the inter-regional mobility Mr,r0. To discuss targeted policies which may influence
differently social contact rates at different locations, we decompose the baseline social contact matrix
σr as

sr(0) ¼ sr,H þ sr,W þ sr,S þ sr,O, (2:4)

where the components correspond, respectively, to contacts at home (σr,H), work (σr,W), school (σr,S) and
other locations (σr,O). Social distancing policies are then parametrized in terms of their impact on various
components of the social contact matrix

sr
ij(t) ¼ ur,Hij (t)sr,H

ij þ ur,Sij (t)s
r,S
ij þ ur,Wij (t)sr,W

ij þ ur,Oij (t)sr,O
ij � sr

ij(0), (2:5)

where 0 � ur,Xij (t) � 1 are modulating factors which measure the impact of the policy on social contacts
between age groups i and j at a location X in region r. In the absence of social distancing or
confinement measures, we have ur,Xij (t) ¼ 1; the value of ur,Xij (t) reflects the fraction of social contacts
between age groups i and j at location X in region r when the policy is applied.

This parametrization allows us to consider policies targeted towards subpopulation or specific
regions. For example, school closure in region r during time period [t1, t2] corresponds to setting
ur,Sij (t) ¼ 0 for t∈ [t1, t2], while 0 , ur,Sij , 1 corresponds to social distancing in schools, with lower
values of ur,Sij corresponding to stricter enforcement of measures.

In most cases, ur,Xij (t) does not explicitly depend on the age groups i, j, as it is infeasible to discriminate
between age groups when implementing social distancing requirements. Dependence on age groups
arises when certain types of contacts are primarily related to certain age groups:

— Shielding of elderly populations: such policies affect the contact rates between elderly populations
and other age groups.

— Work restrictions, which affect contacts between age groups of the working population (denoted W):
ur,Wij (t) ¼ ur,W0i[W0 j[W .

Regarding the inter-regional mobility matrix M, following the interpretation discussed in §3.2, we
modulate its value according to the fraction ur,W of the population who continue to commute, that is

Mr,r0 (t) ¼ ur,W (t)Mr,r0 þ (1� ur,W (t))I:

Here, Mr,r0 is the fraction of population in region r whose habitual residence is in region r0.
The modulating factors ur,Xij may be chosen in advance or expressed as a function of the state of the

system. We distinguish:

— pre-planned (also called ‘open-loop’) policies, in which target values of modulating factors ur,Xij (t) are
decided in advance; and

— adaptive policies (also called ‘closed loop’ or feedback control), in which actions are decided and
updated as a function of observed quantities such as number of daily reported cases or number of
daily fatalities. This is similar to the regional ‘tier’ system adopted in England.

2.4.1. Comparative analysis of mitigation policies

To perform comparative analysis across different policies, we need to evaluate policy outcomes across
two dimensions: health outcome and socio-economic impact.
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We quantify the health outcome of each policy by the total number of fatalities during a reference
period, taken to be tmax = 1000 days after the reference date of 1 March 2020. The length of this
reference period is chosen such that it takes into account an eventual ‘second wave’ of fatalities. We
denote this outcome by Dtmax (u), which represent the total fatalities at date tmax associated with policy u.

To quantify the socio-economic impact of a policy, we use as metric the reduction in social contact
resulting from the policy over the horizon [0, tmax], that is

J(u) ¼
Xtmax

t¼1

XK
r¼1

XM
i,j¼1

�
sr
ij(0)� sr

ij(t)
�
N(r, i), (2:6)

defined in terms of person×day units.
The range of policies examined below lead to different outcomes in terms of fatalities Dtmax (u) and

social cost J(u). A policy v dominates (or improves upon) a policy u if it leads to a similar or better
health outcome at an equal or lower cost,

J(v) � J(u) and Dtmax (v) � Dtmax (u),

with at least one inequality being strict. A policy u is efficient among a class of policies U if it cannot be
improved upon by any policy in this class. Given a set of policies U, the subset of efficient policies forms
the efficient frontier of U.

Some recent economic models [6,9,10] formulate the trade-off in different terms, by introducing a
concept of monetary value of human life in order to build a (monetary) welfare function combining
both terms. Aside from ethical issues linked to the very concept of monetization of human life, there
is no consensus on its actual value, which is a key determinant of the trade-off in this approach. Our
approach avoids specifying such a value and aims at identifying the range of efficient policies, leaving
the final choice of the trade-off to policy-makers.

In what follows, the goal is to determine the set of efficient policies and describe the characteristics
and outcomes of such policies. Pre-planned policies are discussed in §§5.1 and 5.2, while adaptive
policies are discussed in §6.
3. Data sources and parameter estimation
We now describes the model inputs as well as the methodology used in the parameter estimation. Table 1
contains a summary of model parameters.

3.1. Data sources
The basic inputs of the model are panel data on number of cases and fatalities reported at the level of Upper
Tier Local Authorities (UTLA) in England, provided by the Public Health England and NHSX [36]. This
defines the geographical granularity of the model: we partition the population of England into 133
regions as defined by the Nomenclature of Territorial Units for Statistics at level 3 (NUTS-3) [37].

For the purpose of our study, we distinguish M = 16 age groups, as shown in table 2, which is the
maximum granularity allowed by the available estimates of age-dependent social contact rates and
fatality rates. The size N(r, a) of age group a in region r is retrieved using the population dataset provided
by Eurostat [38]. Appendix A provides the list of UK regions used in this study and outlines the
performed mapping procedure from UTLA to NUTS-3 regions to ensure consistency across data sources.

3.2. Modelling of inter-regional mobility
For our baseline estimate of inter-regional mobility, we use the 2011 Census data on location of usual
residence and place of work in the UK, provided by the Office for National Statistics [35]. The dataset
classifies people aged 16 and over in employment during March 2011 and shows the movement
between their area of residence and workplace, defined in Local Administrative Units at level 1
(LAU-1) terms. We then map this data onto NUTS-3 regions using the lookup table between LAU-1
and NUTS-3 areas provided by the Office for National Statistics [39].

The data are then represented in the model through the inter-regional mobility matrix M, whose
elements Mr,j represent the fraction of population in region r whose habitual residence is in region j.
Denote by Π(r, j ) the population with residence registered in region j and workplace registered in



Table 1. Summary of parameters for the COVID-19 model.

model parameter name symbol value source

infection rate α 0.055 (0.051, 0.062) [3,26]

incubation rate β 0.2 [1,27,28]

recovery rate γ 0.1 [29–31]

infection fatality rate f see table 5 [32]

symptomatic ratios (low estimate) plow table 4 [33]

symptomatic ratios (high estimate) phigh table 4 [12]

social contact matrix σ appendix B [34]

symptomatic contact adjustment κ 0.5

regional adjustment for contact rates dr figure 2

(pre-lockdown)

regional adjustment for contact rates lr table 7

(pre-lockdown)

inter-regional mobility matrix M [35]

Table 2. Age group distribution for England, 2019. Source: Eurostat [38].

age group [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)

size (millions) 3.3 3.5 3.3 3.1 3.5 3.8 3.8 3.7

fraction 5.9% 6.3% 5.9% 5.5% 6.2% 6.8% 6.8% 6.6%

age group [40,45) [45,50) [50,55) [55,60) [60,65) [65,70) [70,75) [75,100)

size (millions) 3.4 3.8 3.9 3.6 3.1 2.8 2.8 4.7

fraction 6.0% 6.7% 7.0% 6.5% 5.5% 5.0% 4.9% 8.4%

royalsocietypublishing.org/journal/rsos
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region r for r≠ j. In addition, we denote by P(r, r) ¼ P
a[W N(a, r), where W ¼ {5, 6, . . . , 12} represents

the total population at location r in the age category [20, 60) years. Then, we estimate the coefficients of
Mr,j by

bMr,j ¼ P(r, j)PK
i¼1 P(r, i)

: (3:1)

3.3. Epidemiological parameters
Epidemiological parameters were either estimated from publicly available sources [40,41] or set to values
consistent with recent clinical and epidemiological studies in COVID-19 [26,32,42].

3.3.1. Social contact rates

Contact rates across age classes have been estimated in studies by Mossong et al. [34,41] and Béraud et al.
[43]. We use the estimates of social contact rates provided by Mossong et al. [34] for the 16 age groups
defined in table 2. Using the PyRoss methodology [40], we further decompose the contact matrix, as
in (2.4), into four components representing contacts at home (σH), work (σW), school (σS) and other
locations (σO). Estimation methods and parameter values for these matrices are discussed in appendix B.

Contact rates may vary across different regions due to the heterogeneity in socio-economic
composition structure and specific regional characteristics, such as population density, level of
urbanization and the level of use of public transport. To account for this heterogeneity, we
parametrize the (pre-lockdown) contact matrix in region r as σr(0) = drσ where the regional adjustment
factors {dr : r = 1,…, 133} are estimated to reproduce the regional growth rate of reported cases before
the lockdown period. The results are displayed in figure 2. Table 3 provides a summary of selected
characteristics of five regions with the highest values of the regional adjustment factors dr.



Table 3. Summary of regions with the highest regional multiplier dr for social contact matrix. Number in brackets signify the
respective rank of the measured quantity.

region dr density inward mobility outward mobility population

UKC12 1.80 925.9 (59) 17.6% (82) 19.1% (105) 276 988 (102)

UKI62 1.68 4518.4 (67) 16.6% (87) 43.2% (12) 389 473 (59)

UKG32 1.64 1205.5 (59) 14.5% (96) 46.2% (6) 215 055 (120)

UKI53 1.62 6161.9 (11) 23.4% (50) 41.6% (16) 587 575 (25)

UKC23 1.52 2026.9 (49) 13.7% (103) 24.0% (78) 277 733 (99)

Figure 2. Regional multiplier dr for social contact matrix, implied by epidemic dynamics pre-lockdown (before 23 March 2020).
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As seen in figure 2, our findings imply heterogeneity of social contact rates across regions. As we will
observe below, these differences have a considerable impact on regional epidemic dynamics.
3.3.2. Incubation rate

Following the study of Ferguson et al. [1], we use an incubation rate β = 0.2, which corresponds to an
incubation period of approximately 5 days. This is further supported by several empirical studies on
diagnosed cases in China outside Hubei province. An early study of Backer et al. [44] based on 88
confirmed cases, which uses data on known travel to and from Wuhan to estimate the exposure
interval, indicates a mean incubation period of 6.4 days with a 95% confidence interval (CI) of 5.6–7.7
days. Linton et al. [27], based on 158 confirmed cases, estimate a median incubation period of 5.0 days
with 95% CI of 4.4–5.6 days and estimate the incubation period to have a mean of around 5 days
with 95% CI of 4.2–6.0 days. Lauer et al. [28] estimates a median of incubation period to be 5.1 days
with 95% CI of 4.5–5.8 days, based on 181 cases over the period of 4 January to 24 February 2020.
3.3.3. Proportion of symptomatic and asymptomatic infections

The probability p that an infected individual develops symptoms is an important parameter for epidemic
dynamics, yet subject to a high degree of uncertainty: studies on various datasets [12,33,45–47] are based



Table 4. Age-dependent symptomatic ratios, p. Source: Office for National Statistics [33] and Davies et al. [12].

age group [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)

plow 0.075 0.075 0.05 0.05 0.15 0.15 0.21 0.21

phigh 0.15 0.15 0.1 0.1 0.3 0.3 0.42 0.42

age group [40,45) [45,50) [50,55) [55,60) [60,65) [65,70) [70,75) [75,100)

plow 0.23 0.23 0.28 0.28 0.41 0.41 0.375 0.375

phigh 0.45 0.45 0.56 0.56 0.82 0.82 0.75 0.75

Table 5. Age-dependent infection fatality rates. Source: Verity et al. [32].

age group [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)

f (%) 0.002 0.002 0.01 0.01 0.05 0.05 0.1 0.1

age group [40,45) [45,50) [50,55) [55,60) [60,65) [65,70) [70,75) [75,100)

f (%) 0.2 0.2 0.6 0.6 2.00 2.00 4.0 7.5

royalsocietypublishing.org/journal/rsos
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on small samples and yield a wide range of estimates. In particular, an early estimate from the Diamond
Princess cruise ship [47] and Japanese evacuation flights from Wuhan yielded estimates as high as p≃
0.7− 0.8 [48], while a July 2020 study by the Office for National Statistics [33], based on a much larger
sample, showed that p can be as low as 0.23. However, clinical studies [12] indicate that this
probability may strongly depend on the age group considered.

We use a range of values for the age-dependent probability pa whose upper bound is consistent with
Davies et al. [12] and whose lower bound is consistent with the estimates provided by the Office for
National Statistics [33]. These values are displayed in table 4. Given the much larger sample size used
in the study of Office for National Statistics [33], we use the corresponding estimates (low values,
denoted as plow in table 4) as benchmark unless stated otherwise.
3.3.4. Recovery rate γ

In line with Cao et al. [29], Li et al. [30] and Rocklöv et al. [31], we use a recovery rate γ = 0.1, which
corresponds to an average infectious period of 10 days.
3.3.5. Infection fatality rates

We denote by fa the (infection) fatality rate for age group a. In practice, these parameters are difficult to
estimate during outbreaks and estimates may be subject to various biases [49]. Note that the infection
fatality rate (IFR) is different from (and generally much smaller than) the case fatality rate.

Fatality rates for COVID-19 have been observed to be highly variable across age groups [32,42,50].
Based on the infection fatality rates provided in Verity et al. [32] for different age groups and the UK
population distribution, we derive the aggregated IFR for the respective 16 age groups of interest as
summarized in table 5. These estimates are consistent with data obtained from other countries; for
example, see Salje et al. [50].
3.4. Estimation of the infection rate
We use a simulation-based indirect inference method [51] for estimating the infection rates α0, α1 for
asymptomatic and symptomatic carriers across age classes.

Due to the lack of direct observability of asymptomatic carriers and lack of granularity of case data
(the breakup by age class in each region is not reported), we first consider the case where α0(a) = α1(a) = α,
and then explain how to adjust for asymptomatic/symptomatic carriers and age-dependence.



Table 6. Age-dependent infection rates: symptomatic (α1) versus asymptomatic (α0).

age group [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)

α0 0.045 0.045 0.048 0.048 0.039 0.039 0.034 0.034

α1 0.174 0.174 0.185 0.185 0.148 0.148 0.132 0.132

age group [40,45) [45,50) [50,55) [55,60) [60,65) [65,70) [70,75) [75,100)

α0 0.033 0.033 0.031 0.031 0.025 0.025 0.027 0.027

α1 0.128 0.128 0.118 0.118 0.098 0.098 0.102 0.102

Table 7. Estimated values for regional adjustments dr and lr in NUTS-1 regions.

NUTS-1 region pre-lockdown (dr) lockdown (lr)

South West (UKK) 0.729 0.099

East Midlands (UKF) 0.952 0.134

London (UKI) 1.143 0.100

West Midlands (UKG) 1.020 0.126

Yorkshire and Humber (UKE) 1.069 0.137

South East (UKJ) 0.920 0.116

North East (UKC) 1.260 0.131

North West (UKD) 1.122 0.137

East of England (UKH) 0.994 0.129

royalsocietypublishing.org/journal/rsos
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To estimate α, we simulate the stochastic model (2.3) for a range of values 0.03≤ α≤ 0.15. The value of
α is estimated by matching the logarithmic growth rates of the simulated reported cases with that of
reported cases Ct in England.

For the simulation, we use parameters specified in table 1 and the following initial conditions for t0 =
10 March 2020,

Et0 (r, a) ¼
N(r, a)P

a0[W N(r, a0)
Ct0þ5(r)
p2 p

1a[W (3:2)

where W ¼ {5, 6, 7, 8, 9, 10, 11, 12} corresponds to age groups in the working population and
At0 (r, a) ¼ 0, Dt0 (r, a) ¼ 0, It0 (r, a) ¼ 0 for all a. These initial conditions ensure that the simulations
agree on average with regional case numbers on 15 March 2020, for all values of α.

This procedure yields an estimated value of ba ¼ 0:055 and a confidence interval [0.051, 0.062]. This
value of ba, together with the model parameters in table 1, yields a good fit of the pre-lockdown
evolution of case numbers.

These results are consistent with estimates obtained in Donnat & Holmes [3] and Dorigatti et al. [26]
using data from other countries.

The above estimate of α represents an average infection rate. Recent epidemiological evidence
suggests that symptomatic carriers in a given age group a have a higher rate of infection α1(a) than
asymptomatic carriers (whose infection rate is denoted α0(a)) [52]. Sayampanathan et al. [52] estimate
that when adjusted for age and gender, the incidence of COVID-19 among close contacts of a
symptomatic index case was 3.85 times higher than for close contacts of an asymptomatic carrier, that
is α1(a)≃ 3.85 α0(a).

Assuming the average infection rate is identical across age groups, we obtain

a ¼ paa1(a)þ (1� pa)a0(a):

These two constraints lead to unique values (α0(a), α1(a), shown in table 6) consistent with pa and global
estimate for α.
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Figure 3. Inter-regional mobility across London boroughs. (a) Pre-lockdown: before 23 March 2020. (b) During lockdown: 23
March–10 June 2020.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:201535
12

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 F

eb
ru

ar
y 

20
22

 

3.5. Inter-regional mobility and social contact during confinement
Confinement measures were implemented across the UK starting 23 March 2020 via the Coronavirus
Act.2 During this ‘lockdown’ period schools and workplaces were closed and social contact was
reduced, as evidenced by mobility data.3 However, mobility data also reveal regional differences in
the impact of the lockdown.

We model the reduction in inter-regional mobility through an adjusted mobility matrix

bMr,r0 (t) ¼ q bMr,r0 þ (1� q)I, where 0 , q , 1, (3:3)

and bMr,r0 is the inter-regional mobility matrix defined in (3.1). According to the Labour Force Survey data
from 2018/19 [53], 7.1 million adults across the UK are considered as ‘key workers’. We set q ¼ 20% to
take into account the fact that these key workers continued to access their workplace during the
lockdown period. This is also consistent with the methodology in Rawson et al. [7] and empirical
studies of Santana et al. [54] on mobility changes before and after lockdown in the UK. Figure 3
shows the submatrix corresponding to daily mobility across London boroughs, and illustrates the
observed dramatic drop in commute patterns.

We model the impact of confinement on the social contact matrix through a regional multiplier lr,

sr(t) ¼ lr � s(0), (3:4)

where lr≤ dr represents the reduction in social contacts during the lockdown period; lr = dr corresponds to
the pre-lockdown level of social contact. The value of lr is estimated from panel data on regional epidemic
dynamics during the period from 23 March to 1 June 2020, using a least-squares logarithmic regression
on the number of observed regional cases (see table 7).

The average value of this reduction factor is found to beP133
r¼1 N(r)lrP133
r¼1 N(r)

¼ 0:12,

which is an average reduction of 88% in social contacts, an order of magnitude corroborated by mobility
data [54], showing that the lockdown was very effective in reducing social contacts.

3.6. Goodness-of-fit
Having estimated the model parameters using data on reported cases between 10 March and 20 May 2020
we assess the goodness-of-fit and out-of-sample performance using reported cases and fatalities between 21
May and 22 June 2020. Figures 4 and 5 show that the model is able to reproduce the in-sample and out-of-
sample evolution of case numbers and fatalities, at national level as well as regional level.
2See https://www.legislation.gov.uk/ukpga/2020/7/contents/enacted.
3See https://www.oxford-covid-19.com/.

https://www.legislation.gov.uk/ukpga/2020/7/contents/enacted
https://www.legislation.gov.uk/ukpga/2020/7/contents/enacted
https://www.oxford-covid-19.com/
https://www.oxford-covid-19.com/
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4. Observable quantities and uncertainty
When applying such models to epidemic data, a key point is to realize that the state variables S, E, I, A, R
are not directly observed (and certainly not in real time) but need to be inferred from other observable
quantities.

In the absence of widespread testing, public health authorities are faced with the problem of
controlling a system under partial observation. This lack of direct observability has some implications
for the estimation and interpretation of the model, which we briefly discuss here.
4.1. Observable quantities
The two main observables in COVID-19 data are

— the cumulative number of reported cases; and
— the cumulative number of COVID-19 fatalities Dt.
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Figure 6. Estimate of case reporting probability π(t) based on a comparison of fatalities and reported cases.
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Of the two, fatalities are generally considered more reliable, as deaths are nearly always reported, while
identification of cases requires testing or self-reporting. We thus identify the observed number of fatalities
with the state variable Dt.

In the absence of widespread testing, only a fraction π of cases are reported. This fraction may change
with time due to testing campaigns.4 We therefore cannot assume the number of infectious cases to be
directly observed: rather, we estimate it from the fatality count Dt (see also Jombart et al. [55]).

Let Ct be the cumulative number of (symptomatic) infectious cases. Assuming that

— the daily number r(t) of reported cases is a fraction π(t) of new cases, that is

r(t) ¼ p(t)(Ctþ1 � Ct); (4:1)

— deaths occur on average T days after detection;

we obtain that the daily fatality count is proportional to the lagged number of new cases,

DtþTþ1 �Dt ≃ f(Ctþ1 � Ct) ¼ f
p(t)

r(t), (4:2)

where f is the (average) infection fatality rate. We use these relations to obtain an estimate for the
cumulative number Ct of symptomatic infections and the reporting ratio π(t).

Using equation (4.2), we estimate the average delay T between case reporting and death by identifying
the lag Twhich maximizes the correlation between theDt+T+1−Dt and r(t). Using an average fatality rate of
f ¼ 0:9% for the UK as in [1] (see discussion in §3.3), we estimate the reporting probability to be

dp(t) ¼ f r(t)
DtþTþ1 �Dt

, (4:3)

which implies that the total number of cases in England is more than 20 times the reported number. As
shown in figure 6, prior to June 2020 this reporting ratio was around dp(t) ¼ 4:5%; with the subsequent
increase in testing, the estimated reporting ratio has steadily increased tomore than 20% inNovember 2020.

4.2. Implications of partial observability
A key issue in epidemic control is the availability of reliable indicators for the intensity of an ongoing
epidemic. Public health authorities have communicated the daily number of reported cases and
fatalities, and these have served as inputs for policy planning.

An important corollary of the above discussion is that, given the combination of random factors
affecting dynamics and the considerable uncertainty on the actual number of new infections, it is
perfectly possible to observe a run of many consecutive days without new reported cases while in fact
the actual number of infections is on the rise.
4See https://ourworldindata.org/coronavirus-testing.

https://ourworldindata.org/coronavirus-testing
https://ourworldindata.org/coronavirus-testing
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Figure 7 shows an example of scenario in our model where, for 60 consecutive days, although a small
number of (symptomatic and asymptomatic) cases appear, due to the low detection probability (p ¼ 4:5%),
none of them is reported. Nevertheless, after a run of 60 days without any reported cases (blue shaded area
in figure 7), which may prompt public health authorities to lower their guard, the epidemic takes off again.
Figure 7 displays in fact two sample paths with the same initial conditions, which differ only through the
stochasticity of the dynamics. The fact that the breakout occurs only in one of the two scenarios (in blue) but
not in the other illustrates how random flare-ups may originate from a small group of undetected cases.

Figure 8a shows the probability of observing a second peak in infections when social distancing
measures are lifted after no reported cases for L consecutive days. This probability is estimated using
500 simulated paths from (2.3). It is striking to observe that, even after 60 days with no reported
cases, the probability of observing a resurgence of the epidemic is around 40%. Figure 8a (blue
dashed line) shows the same probability conditional on observing no fatalities for L consecutive days.

These observations point to the importance of broader testing: as shown in figure 8b, an increase in
the probability π of detecting new cases leads to a strong decrease in the probability of misdiagnosing the
end of the epidemic, as in the scenario described above.
5. Comparative analysis of epidemic control policies
5.1. Confinement followed by social distancing
We first consider the impact of a national ‘lockdown’ followed by social distancing, which reflects the
situation in the UK between March 2020 and August 2020. We examine in particular the impact of a
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lockdown duration T and the level of social distancing after lockdown on the number of fatalities and the
associated social cost. To do so, we parametrize the contact matrix as

sr(t) ¼ lr s for t0 � t � t0 þ T (lockdown),
((1�m)lr þmdr) s for t . t0 þ T (after lockdown),

�
(5:1)

where lr measures the level of social distancing under lockdown, as estimated from observations for the
period from 23 March to 31 May, and the parameter m∈ [0, 1] measures the level of compliance with
social distancing measures. A value of m close to zero indicates a level of social contact similar to
lockdown, while m = 1 corresponds to normal levels of social contact.

The origin date t = 0 corresponds to 1 March 2020. All scenario simulations include a lockdown
starting at t0 = 23 March 2020. We consider a range 105≤ T≤ 335 for the lockdown duration and 0.2≤
m≤ 1 for post-lockdown social distancing levels. Note that the actual duration of the first lockdown in
England corresponded to T = 105.

As shown in figure 9a, the level of social distancing after the confinement period is observed to be
more important (figure 9b) than the length of the confinement period (figure 9a). This is consistent
with the findings in Lipton & Lopez de Prado [13]. Smaller values of m, associated with stricter social
distancing, lead to a lower number of fatalities but for at an increased social cost (figure 9b). On the
other hand, the lengthening of the lockdown duration T, while significantly increasing the associated
social cost, does not result in a significant reduction in the number of fatalities, especially if social
distancing is not respected after lockdown.

Figure 9 also shows that some of these policies are inefficient, in the sense that we can reduce fatalities
and the social cost simultaneously by shortening the lockdown period or by relaxing social distancing
constraints, as shown in figure 10.



Figure 11. Lockdown of 105 days followed by social distancing (m = 0.3): regional mortality per 100 000 inhabitants.

Table 8. Outcomes for policies represented in figure 10.

policy blue dotted: orange dash: green solid:

m = 0.5, T = 335 m = 0.5, T = 105 m = 0.4, T = 105

social cost (×1011) 3.5 2.9 3.4

projected fatalities 144 600 146 000 124 400
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As shown in table 8, by comparing the orange and blue plots in figure 10,which represent the same post-
lockdown compliance level (m = 0.5), we observe that extending the lockdown duration increases social cost
without reducing the total number of fatalities. On the other hand, comparing the orange and green plots,
which correspond to the same lockdown duration of T = 105 days, shows that moving the compliance level
from m = 0.5 to m = 0.4 reduces the second peak amplitude by 35% and fatalities by 13.9%.
5.1.1. Regional heterogeneity

While the policies discussed here are applied uniformly across all regions, we observe a significant
heterogeneity in mortality levels across regions, as well as in terms of the timing and amplitude of a
second peak in infections. As shown in figure 11, some regions exhibit mortality levels up to four
times higher than others. This huge disparity in mortality rates cannot be explained by demographic
differences alone, which are much less pronounced: more important seems to be the differences in
social contact patterns, as illustrated in figure 2. Indeed, as shown in figure 12a, there is a positive
correlation (above 40%) between regional COVID-19 mortality and the intensity of social contact as
measured by the parameter dr, defined in §3.3. Figure 12b shows that this heterogeneity is also
reflected in the timing and amplitude of second peaks.
5.2. Targeted policies
We now consider the impact of social distancing measures targeting particular age groups or environments
(school, work, etc.) following a lockdown of duration T, by setting

sr
ij(t) ¼

lr s for t0 � t � t0 þ T (lockdown)
sr,H
ij þ uSijs

r,S
ij þ uWij s

r,W
ij þ uOij s

r,O
ij for t . t0 þ T:

�
(5:2)
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Figure 12. Regional outcomes for lockdown of 105 days followed by social distancing (m = 0.3). (a) Level of social contact (dr)
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We consider different targeted measures after a lockdown period of T = 105 days (the actual duration of
the lockdown in England): school closure, shielding of elderly populations and workplace restrictions,
restrictions on social gatherings and combinations thereof. Note that there is no control over the social
contacts at home.
35
5.2.1. School closures

Although most of the infected population below 20 is asymptomatic, they may in turn infect the
population over 60 who are more likely to develop symptoms. School closure corresponds to uS = 0,
school reopening with social distancing correspond to uS = 0.5, and school reopening without social
distancing correspond to uS = 1.
5.2.2. Shielding

The high infection fatality rates among elderly populations (age groups over 60) have naturally led to
considering shielding policies for these populations. We model this as a reduction in social contacts of
these age groups to the level observed under lockdown,

sr
i,j(t) ¼ lr(sH

i,j þ sS
i,j þ sW

i,j þ sO
i,j) if i [ {13, 14, 15, 16} or j [ {13, 14, 15, 16}:
5.2.3. Workplace restrictions

Wemodel the impact of a restricted return to work after confinement by assuming different proportion of
workforce return after the lockdown period by choosing

0:2 , uW , 1 for t . t0 þ T, (5:3)

the lower bound uW = 0.2 corresponding to restricting workplace return to ‘essential workers’, as
discussed in §3.5. Since workplace restrictions have an effect on commuting, such measures also have
an impact on the inter-regional mobility matrix

Mt ¼ uW (t)M0 þ (1� uW (t))I, (5:4)

where M0(r, r0) is the baseline mobility matrix defined in (3.1).
5.2.4. Restrictions on social gatherings

Although social activities, such as gatherings at pubs or sports events, may aggravate the contagion of
COVID-19, keeping certain levels of social activities is important to the economic recovery and the
well-being of individuals. The parameter uO measures the fraction of social gatherings: during the
lockdown this fraction was estimated to be as low as 20% (see §3.5). In what follows, we consider
uO ∈ [0.3, 1.0] after the period of lockdown.



Table 9. Impact of school closures and social distancing at schools: outcomes averaged across 50 simulated scenarios, uH =
uW = 1, uO = 0.5.

school closure social distancing at school normal school regime

uS = 0 uS = 0.5 uS = 1.0

social cost (1011) 2.2 1.9 1.5

projected fatalities 153 900 157 000 159 300
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5.2.5. Pubs and schools

Table 9 shows the impact of school closures and social distancing at schools on projected fatalities and
social contacts. Reopening of schools, while reducing significantly the social cost, does not seem to
lead to a significant increase in fatalities.

We compare two post-confinement policies, one (labelled as ‘schools’) consisting in leaving schools
open while social gatherings are restricted (uS = 1, uO = 0.2), and the other (labelled as ‘pubs’)
consisting in closing schools while not restricting social gatherings (uS = 0, uO = 1). The social cost for
the ‘pubs’ policy is 2.3, while the cost for the ‘schools’ policy is 3.0. However, as shown in figure 14,
the ‘open school’ policy leads to 35% fewer fatalities compared to the ‘open pubs’ policy.
 35
5.2.6. Shielding of senior citizens

We have examined the impact of shielding in isolation and also in combination with other measures such
as school closure and social distancing.

As shown in figure 13a, whether applied in isolation or in combination with other measures,
shielding of elderly populations is by far the most effective measure for reducing the number of
fatalities. As clearly shown in figure 13a, regardless of the trade-off between social cost and health
outcome, a policy which neglects shielding of the elderly is not efficient and its outcomes can always
be improved through shielding measures (see figures 13 and 15).

For policies without shielding, the level of social gatherings, uO, is the leading factor to determine the
efficiency frontier. In figure 16a, the efficiency frontier contains two classes of policies:

— ‘School and work’ policies, which do not include any restrictions on school or work (uS = 1, uW = 1) but
varying level of restrictions on social gatherings (0.3≤ uO≤ 1). Within this class of policies, different
level of social gatherings lead to very different outcome of fatalities, as illustrated in figure 16a.

— ‘No pubs’ policies, where social gatherings outside school and work are restricted (uO = 0.3), with
different levels of social distancing uS∈ {0, 0.5, 1} uW∈ [0.2, 1] at school and work.

However, as observed in figure 16b, these policies are not efficient when shielding measures are put in
place for the elderly.

Under shielding, the spectrum of efficient policies is parametrized by the fraction uW of the workforce
returning to work. As shown in figure 16c, we can distinguish two classes of efficient policies
under shielding:

— ‘School and pubs’, consisting of policies without restrictions on schools or social gatherings (uS = 1,
uO = 1) and different levels uW of restrictions on workplace gatherings.

— ‘Restricted work’ policies, under which only ‘essential’ workers are allowed on-site work (uW = 0.2),
with either

(i) no school restrictions (uS = 1) anddifferent levels of restrictions on social gatherings (0.2≤ uO≤ 1); or
(ii) restrictions on social gatherings (uO = 0.3, that is ‘no pubs’) and different levels of social

distancing in school (0≤ uS ≤ 1).
As figure 16d illustrates, ‘school and pubs’ and ‘restricted work’ policies are not efficient without shielding.

In the absence of shielding, social gatherings seem to be the main vector for contagion.
When shielding measures are put in place, the social contacts associated with the elderly are
reduced to the same level as under lockdown; in this case, contacts at work become the main vector
of contagion.
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5.3. Impact of parameter uncertainty

5.3.1. Uncertainty on the symptomatic ratio

The above results are sensitive to the value of the symptomatic ratios which, as noted in §3, are highly
uncertain (table 4). Figure 17 shows the policy outcomes for low versus high symptomatic ratios
across different compliance levels and lockdown duration. As observed in this figure, while the
overall pattern of the efficiency diagram is similar, the projected fatality levels shift considerably
depending on the assumption on the symptomatic ratio: from 50 000 to 200 000 for low symptomatic
ratios to 126 000–430 000 for high symptomatic ratios.
5.3.2. Heterogeneity in infection rates

We now examine the impact of introducing different infection rates for symptomatic and asymptomatic
carriers, as discussed in §3.4.

For the sake of brevity, we only show some sample results to illustrate the impact of heterogeneous
infection rates. Figure 18 shows the comparison of the ‘open schools’ versus ‘open pubs’ policies
described in §5.2.5, when infection rates are different for symptomatic and asymptomatic carriers.
Comparison with figure 18 reveals a reduction of around 10% in fatalities but the overall picture
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remains similar: school closures are seen to be less effective than restrictions on non-work/school
gatherings, as observed in §5.2.5.

Figure 19 shows the impact of heterogeneous infection rates on the efficiency diagram. As the figure
illustrates, the overall pattern remains similar to the case of homogeneous infection rate, but the number
of fatalities is reduced.
6. Adaptive mitigation policies
We now consider adaptive mitigation policies, in which the daily number of (national or regional)
reported cases is used as a trigger for social distancing measures. Such policies have been recently
implemented, in the UK and elsewhere, at a local or national level using a regional ‘tier’ system. We
analyse the simplest version of such a tier system, namely a two-tier approach where a region is
moved to ‘Tier 2’ when the number of cases goes above a threshold.
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We distinguish centralized policies, based on monitoring of national case numbers, from decentralized
policies where monitoring and implementation of measures are done at the level of (NUTS-3) regions.

6.1. Centralized policies
We first consider centralized policies which monitor the number of daily reported cases at country level.
Given a reporting probability π(t) (see §4), given a number rt of new reported cases, the estimated number
of cases is r(t)/π(t). Whenever, the number of daily estimated cases (per 100 000 inhabitants) exceeds a
threshold Bon, confinement measures are imposed for a minimum of L days, until the number of daily
(estimated) cases falls below the threshold Boff < Bon. Outside these lockdown periods, we assume
social distancing is in place with a compliance level m; we use a default value of m = 0.5.
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Figure 21. Simulation of reported cases in England and Leicester under a centralized triggering policy with Bon = 80, Boff = 0.4 ×
Bon, m = 0.5 and no shielding. (a) Daily reported cases in England, (b) daily reported cases in Leicester.
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This policy is implemented after the initial lockdown (that is, after 4 July 2020). In terms of the social
contact matrix, we have, for t > t0 + T,

sr(t) ¼ ((1�m)lr þmdr)s, and it ¼ 0, if r(t)
p(t) � N

100 000Boff and Pt�1
s¼t�Lis ¼ 1

� �
or r(t)

p(t) � N
100 000Bon and it�1 ¼ 0

� �
;

sr(t) ¼ lr � s, and it ¼ 1, if r(t)
p(t) .

N
100 000Bon or Pt�1

s¼t�Lis ¼ 1:

8>>><
>>>: (6:1)

Here, T = 105, it is the indicator of whether lockdown is applied on day t, and r(t) is the daily reported
cases in England on day t. Pt�1

s¼t�Lis ¼ 1 if lockdown has been applied for L consecutive days during the
period [t− L, t− 1].

We simulate the dynamics with various choices of Boff and Bon:

— Bon∈ {40, 80, 120, 160, 200} (daily new cases per 100 000 inhabitants); and
— Boff = 0.2 Bon, Boff = 0.4 Bon or Boff = 0.8 Bon.

We assume that once a lockdown is triggered it lasts a minimum of L = 7 days and that, once lockdown is
removed, individuals continue to observe social distancing as measured by the parameter m∈ [0, 1]. Data
on real-time mobility monitoring in the UK,5 indicate mobility to be at 50% of normal level during the
post-lockdown period, and thus we use m = 0.5 as a default value (figure 20).

6.1.1. Example

Figure 21 shows an example of such an adaptive policy, where lockdown is triggered when estimated
daily cases exceeds 2240 nationally, and maintained until the count of new daily cases drops to 896.
5See https://www.oxford-covid-19.com/.

https://www.oxford-covid-19.com/
https://www.oxford-covid-19.com/
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In the scenario shown in figure 21a, this results in two short lockdowns, totalling 19 days in all, which
bring under control the national progression of the epidemic and avoid a ‘second peak’ at national level.
However, as shown in figure 21b, this policy is less successful at regional level, resulting in a regional
outbreak in Leicester.
Sci.8:201535
6.1.2. Impact of the triggering threshold Bon
The trigger threshold Bon has a significant impact on the efficiency of the policy. Smaller Bon values
correspond to more frequent lockdowns, leading to a larger social cost and fewer fatalities. Here, we
compare the impact of the triggering threshold Bon when m = 0.5 and Boff = 0.4 × Bon (figure 22).

We observe in our simulations a second peak in It for England when Bon = 200, while we observe no
second peak when Bon = 40. When Bon = 40, It remains at level 2 × 105 with frequent interventions for 200
days and then decreases to zero. The social costs for policy Bon = 200 and policy Bon = 40 are 2.9 and 3.1,
respectively. Policy Bon = 40 has 18% fewer fatalities compared to policy Bon = 200. Oxfordshire exhibits
the same profile as England when Bon = 10. However, the shape of It is different for Bon = 40 where
Oxfordshire experiences a small outbreak around day 350.

In summary, smaller Bon values correspond to more frequent lockdowns and result in damping or
elimination of the ‘second peak’.
6.1.3. Impact of demographic granularity

Several studies on the impact of public health policies on COVID-19 dynamics have used less granular
models with fewer age groups [10]. To assess whether such coarse-graining may result in a loss of
accuracy for the model projections, we have compared our present model, which has 16 age groups, with
coarse-grained versions of the model in which all individuals in the 20–59 age range are grouped into two
age groups (leading to a total of five age groups) or a single group (leading to 4 age groups).6 Parameters
for the coarse-grained models are obtained as population-weighted averages of the granular model.

Comparison of model projections, shown in figure 23, indicate that the results are robust to changes in
model granularity. Some quantitative differences may emerge when assessing the impact of targeted
policies, but the overall dynamics of infections, cases and fatalities are rather insensitive to the
demographic granularity.
6.2. Decentralized policies: regional tier system
We now consider a decentralized version of the above policies, based on monitoring of regional number
of cases as triggers for regional confinement measures. In terms of the social contact matrices, we have,
for t > t0 + T,

sk(t) ¼ ((1�m)lk þmdk)s, ikt ¼ 0, if rt(k)
p(t) � N(k)

100 000 Boff and Pt�1
s¼t�Li

k
s ¼ 1

� �
or rt(k)

p(t) � N(k)
100 000 Bon and ikt�1 ¼ 0

� �
;

sk(t) ¼ lk � s, and ikt ¼ 1, if rt(k)
p(t) .

N(k)
100 000 Bon or Pt�1

s¼t�Li
k
s ¼ 1:

8>>><
>>>:
6This model was implemented in a previous version of this paper: https://www.medrxiv.org/content/10.1101/2020.08.26.20182477v2

https://www.medrxiv.org/content/10.1101/2020.08.26.20182477v2
https://www.medrxiv.org/content/10.1101/2020.08.26.20182477v2
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Figure 23. Impact of model granularity: projections for an adaptive policy with Bon = 80, Boff = 0.4 × Bon, m = 0.5 and no
shielding. (a) Symptomatic infections (It) in England, (b) projected fatalities, (c) projections for reported cases: England,
(c) projections for reported cases: Leicester.

fa
ta

lit
ie

s

2.90 2.95 3.00
social cost 1 × 1011

3.05 3.153.10 2.90 2.95 3.00
social cost 1 × 1011

3.05 3.153.10

40
80
120
160
200

0.2Bon
0.4Bon
0.8Bon

125 000

120 000

135 000

130 000

140 000

115 000

110 000

125 000

120 000

135 000

130 000

140 000

115 000

110 000

(a) (b)

Figure 24. Decentralized confinement triggered by regional daily case numbers: social cost versus fatalities (m = 0.5). (a) Influence
of the threshold Bon for triggering lockdown, (b) Influence of the threshold Boff for lifting lockdown.
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Here, ikt is the indicator of whether lockdown is applied in region k on day t and rt(k) is the daily number
of cases reported in region k on day t. The term Pt�1

s¼t�Li
k
s is used to track if lockdown has been applied in

region k for L consecutive days during [t− L, t− 1]. We use the same values of Bon and Boff as in §6.1 (see
figure 24).

Figure 25 compares the outcomes of centralized and decentralized triggering policies. Decentralized
policies are observed to always improve over centralized policies.

As an example, for Bon = 80 and Boff = 0.4 Bon fatalities in England are 133 000 under the centralized
policy and 122 000 under the decentralized policy, that is 8% lower.

Figure 26 compares regional fatalities per 100 000 habitants for these policies. For more than 90% of
the regions, decentralized measures lead to fewer fatalities. The most effective reductions are in Dorset,
South West England (UKK22) with 23% fewer fatalities and in Cornwall and Isles of Scilly (UKK30) with
21% fewer fatalities. There are a few exceptions (see regions in light blue in figure 26c). These regions are
already under control before adaptive policies are applied. Therefore, the improvement of moving from
centralized policy to decentralized policy is limited.
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Figure 25. Efficiency analysis for centralized (blue) and decentralized (orange) adaptive mitigation policies. Outcomes are averaged
across 100 simulated scenarios. (a) Low symptomatic ratios, (b) high symptomatic ratios.
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Figure 26. Fatalities per 100 000 inhabitants for centralized (a) versus regional (b) adaptive mitigation policies. Same triggering
thresholds are used in both cases: Bon = 80 and Boff = 0.4 Bon. (a) Centralized (country-level) adaptive policy, (b) decentralized
(regional) adaptive policy, (c) increase in fatalities ( per 100 000 inhabitants) when moving from regional to centralized policy.
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Figure 27. Number of infected individuals under centralized (blue dashed line) and decentralized (orange solid line) policies. Same
triggering thresholds are used in both cases: Bon = 80 and Boff = 0.4 Bon. (a) Number of symptomatic individuals (It) in England
under centralized and decentralized policies, (b) number of symptomatic individuals (It) in Leicester (UKF21), (c) number of
symptomatic individuals (It) in York (UKE21).
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Figure 28. Reported cases in England and Leicester under a decentralized triggering policy: average of 50 simulated scenarios with
Bon = 80, Boff = 0.4 × Bon, m = 0.5, no shielding. (a) Daily reported cases in Leicester, (b) daily reported cases in England.
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Figure 27a compares the dynamics of symptomatic infections (It) for the same example. There is a
reduction of 100 000 in the amplitude of the second peak value when moving from the centralized
policy to decentralized one. Decentralized policy also damps the second-peak values in most of the
regions. Similar effects are observed for York (figure 27c) and Leicester (figure 27b).

On 29 June 2020, Leicester became the first city in Britain to be placed in a local lockdown,
after public health officials voiced concern at the city’s alarming rise in COVID-19 cases. Earlier
in June, the Government announced that parts of the city would be released from lockdown,
while a ‘targeted’ approach will see pockets remain under tighter restrictions. Our simulations
indicate a 60% reduction of the second-peak value in Leicester when a decentralized policy is
implemented (figure 27b).



Table 10. Summary of outcomes for different policies, starting from the same initial conditions on 4 July 2020.

It At fatalities max It social projected

policy cost fatalities

(1 August) (1 August) (1 August) (2nd peak) (1011) (1000 days)

confinement followed by

strict social distancing

(m = 0.3)

47 400 188 700 39 400 255 700 3.8 96 600

confinement followed by

moderate social distancing

(m = 0.5)

98 400 392 400 40 700 766 800 2.9 146 100

pre-planned 84 700 360 100 45 500 613 300 2.9 122 900

centralized triggering 80 300 321 200 40 500 423 200 3.0 133 500

decentralized triggering 80 100 320 200 40 400 292 200 3.0 122 100

decentralized triggering and

shielding

55 000 266 100 39 700 267 700 3.4 65 900

‘protect lives’ 25 900 118 400 39 600 63 900 4.3 51 700
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6.2.1. Example

Figure 28 shows an example of such a decentralized triggering policy, with the same triggering
thresholds as in the centralized example in figure 21. At regional level, we see in figure 28a that this
policy is more successful than the centralized policy in taming the local outbreaks in Leicester,
substantially reducing the second peak through 4 one-week regional lockdowns. At the national level,
this results in a strong damping of ‘second wave’ infections, as shown in figure 28b (compare with
figure 21a).
6.3. Adaptive versus pre-planned policies
Figure 29 compares the health outcome and social cost of the efficient policies considered in §§5.2, 6.1 and
6.2. The efficient frontier of pre-planned policies are among policies with uS∈ {0, 0.5, 1}, 0.2≤ uW≤ 1.0
and 0.3≤ uO≤ 1.0. For centralized and decentralized policies, m = 0.25, 0.5, 0.75, 1; Bon = 80, 160, 120,
160, 200; and Boff = p × Bon with p = 0.2, 0.4, 0.8.

We observe that
— adaptive policies, in which measures are triggered when the number of daily new cases exceeds a

threshold, are more efficient than pre-planned policies; and
— as shown in figure 29a,b, a decentralized policy is more efficient than both centralized policy and pre-

planned policy.

In table 10, we provide a summary of outcomes for five different types of policies;
— confinement of T = 105 days followed by social distancing (m = 0.3 or m = 0.5), no shielding;
— pre-planned policy: social distancing at work and school (uH = 1, uS = 0.5, uW = 0.5), restrictions on

social gatherings (uO = 0.3) and no shielding.
— centralized and decentralized triggering policies (§§6.1 and 6.2) with m = 0.5, Bon = 80, Boff = 0.4 Bon

and no shielding;
— decentralized triggering combined with shielding of elderly populations: m= 0.5, Bon = 80, Boff = 0.4 Bon;
— ‘protect lives’ policy: in the range of efficient policies, the one which results in the fewest

fatalities is a decentralized triggering policy with Bon = 40, Boff = 0.2Bon (so more frequent
triggering of confinement measures than the above), high degree of social distancing (m = 0.25)
and shielding of elderly populations. This policy corresponds to the point in the lower
right corner of figure 29b. The social cost is 4.52, which is much higher than for the other
considered policies.
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Figure 30. Regional comparison of pre-planned and adaptive mitigation policies. (a) It in Mid Lancashire, (b) It in York, (c) It in
Leicester, (d ) It in Birmingham.
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Figure 29. Efficiency plot: pre-planned versus adaptive mitigation policies. (a) No Shielding, (b) shielding.
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Outcomes are averaged across 50 scenarios, starting from the same initial conditions on 4 July (end of
the UK lockdown).

6.3.1. Regional outcomes

Comparing the regional outcomes of the centralized, decentralized and pre-planned policies displayed in
table 10 shows that the decentralized triggering policies are able in many cases to considerably damp the
‘second wave’ of infections. Figure 30 illustrates this in the case of Mid Lancashire, York, Leicester and
Birmingham: the decentralized triggering policy reduces the second peak amplitude by around one half
compared to the pre-planned policy.
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Appendix A. Demographic regions
Table 11 details the used mapping between Upper Tier Local Authority (UTLA) region codes and the
Nomenclature of Territorial Units for Statistics at level 3 (NUTS-3) codes.7 If more than one UTLA
region falls within the boundary of a single NUTS-3 region, the data is then aggregated. On the other
hand, if a single UTLA region lies within more than one NUTS-3 region, the data are distributed
among NUTS-3 regions in proportion to the total number of people living in each region.
Table 11. Mapping between the Upper Tier Local Authority (UTLA) regions and the Nomenclature of Territorial Units for
Statistics at level 3 codes (NUTS-3).

UTLA Code UTLA region name NUTS-3 code mapping

E06000001 Hartlepool UKC11

E06000002 Middlesbrough UKC12

E06000003 Redcar and Cleveland UKC12

E06000004 Stockton-on-Tees UKC11

E06000005 Darlington UKC13

E06000006 Halton UKD71

E06000007 Warrington UKD61

E06000008 Blackburn with Darwen UKD41

E06000009 Blackpool UKD42

E06000010 Kingston upon Hull, City of UKE11

E06000011 East Riding of Yorkshire UKE12

E06000012 North East Lincolnshire UKE13

E06000013 North Lincolnshire UKE13

E06000014 York UKE21

E06000015 Derby UKF11

E06000016 Leicester UKF21

E06000017 Rutland UKF22

(Continued.)

7See https://geoportal.statistics.gov.uk/datasets/c893dfece45f465f857ac34641041863_0 for a lookup table used in the process of
mapping.
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https://geoportal.statistics.gov.uk/datasets/c893dfece45f465f857ac34641041863_0


Table 11. (Continued.)

UTLA Code UTLA region name NUTS-3 code mapping

E06000018 Nottingham UKF14

E06000019 Herefordshire, County of UKG11

E06000020 Telford and Wrekin UKG21

E06000021 Stoke-on-Trent UKG23

E06000022 Bath and North East Somerset UKK12

E06000023 Bristol, City of UKK11

E06000024 North Somerset UKK12

E06000025 South Gloucestershire UKK12

E06000026 Plymouth UKK41

E06000027 Torbay UKK42

E06000030 Swindon UKK14

E06000031 Peterborough UKH11

E06000032 Luton UKH21

E06000033 Southend-on-Sea UKH31

E06000034 Thurrock UKH32

E06000035 Medway UKJ41

E06000036 Bracknell Forest UKJ11

E06000037 West Berkshire UKJ11

E06000038 Reading UKJ11

E06000039 Slough UKJ11

E06000040 Windsor and Maidenhead UKJ11

E06000041 Wokingham UKJ11

E06000042 Milton Keynes UKJ12

E06000043 Brighton and Hove UKJ21

E06000044 Portsmouth UKJ31

E06000045 Southampton UKJ32

E06000046 Isle of Wight UKJ34

E06000047 County Durham UKC14

E06000049 Cheshire East UKD62

E06000050 Cheshire West and Chester UKD63

E06000051 Shropshire UKG22

E06000052 Cornwall and Isles of Scilly UKK30

E06000054 Wiltshire UKK15

E06000055 Bedford UKH24

E06000056 Central Bedfordshire UKH25

E06000057 Northumberland UKC21

E06000058 Bournemouth and Poole UKK21

E06000059 Dorset UKK22

E08000001 Bolton UKD36

E08000002 Bury UKD37

E08000003 Manchester UKD33

E08000004 Oldham UKD37

E08000005 Rochdale UKD37

(Continued.)
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Table 11. (Continued.)

UTLA Code UTLA region name NUTS-3 code mapping

E08000006 Salford UKD34

E08000007 Stockport UKD35

E08000008 Tameside UKD35

E08000009 Trafford UKD34

E08000010 Wigan UKD36

E08000011 Knowsley UKD71

E08000012 Liverpool UKD72

E08000013 St. Helens UKD71

E08000014 Sefton UKD73

E08000015 Wirral UKD74

E08000016 Barnsley UKE31

E08000017 Doncaster UKE31

E08000018 Rotherham UKE31

E08000019 Sheffield UKE32

E08000021 Newcastle upon Tyne UKC22

E08000022 North Tyneside UKC22

E08000023 South Tyneside UKC22

E08000024 Sunderland UKC23

E08000025 Birmingham UKG31

E08000026 Coventry UKG33

E08000027 Dudley UKG36

E08000028 Sandwell UKG37

E08000029 Solihull UKG32

E08000030 Walsall UKG38

E08000031 Wolverhampton UKG39

E08000032 Bradford UKE41

E08000033 Calderdale UKE44

E08000034 Kirklees UKE44

E08000035 Leeds UKE42

E08000036 Wakefield UKE45

E08000037 Gateshead UKC22

E09000001 City of London UKI31

E09000002 Barking and Dagenham UKI52

E09000003 Barnet UKI71

E09000004 Bexley UKI51

E09000005 Brent UKI72

E09000006 Bromley UKI61

E09000007 Camden UKI31

E09000008 Croydon UKI62

E09000009 Ealing UKI73

E09000010 Enfield UKI54

E09000011 Greenwich UKI51

E09000012 Hackney UKI41

(Continued.)
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Table 11. (Continued.)

UTLA Code UTLA region name NUTS-3 code mapping

E09000013 Hammersmith and Fulham UKI33

E09000014 Haringey UKI43

E09000015 Harrow UKI74

E09000016 Havering UKI52

E09000017 Hillingdon UKI74

E09000018 Hounslow UKI75

E09000019 Islington UKI43

E09000020 Kensington and Chelsea UKI33

E09000021 Kingston upon Thames UKI63

E09000022 Lambeth UKI45

E09000023 Lewisham UKI44

E09000024 Merton UKI63

E09000025 Newham UKI41

E09000026 Redbridge UKI53

E09000027 Richmond upon Thames UKI75

E09000028 Southwark UKI44

E09000029 Sutton UKI63

E09000030 Tower Hamlets UKI42

E09000031 Waltham Forest UKI53

E09000032 Wandsworth UKI34

E09000033 Westminster UKI32

E10000002 Buckinghamshire UKJ13

E10000003 Cambridgeshire UKH12

E10000006 Cumbria UKD11, UKD12

E10000007 Derbyshire UKF13, UKF12

E10000008 Devon UKK43

E10000011 East Sussex UKJ22

E10000012 Essex UKH37, UKH34, UKH35, UKH36

E10000013 Gloucestershire UKK13, UKK12

E10000014 Hampshire UKJ36, UKJ37, UKJ35

E10000015 Hertfordshire UKH23

E10000016 Kent UKJ43, UKJ44, UKJ45, UKJ46

E10000017 Lancashire UKD45, UKD46, UKD47, UKD44

E10000018 Leicestershire UKF22

E10000019 Lincolnshire UKE13, UKF30

E10000020 Norfolk UKH15, UKH17, UKH16

E10000021 Northamptonshire UKF24, UKF25

E10000023 North Yorkshire UKE22

E10000024 Nottinghamshire UKF15, UKF16

E10000025 Oxfordshire UKJ14

E10000027 Somerset UKK12, UKK23

E10000028 Staffordshire UKG24

E10000029 Suffolk UKH14

(Continued.)
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Table 11. (Continued.)

UTLA Code UTLA region name NUTS-3 code mapping

E10000030 Surrey UKJ25, UKJ26

E10000031 Warwickshire UKG13

E10000032 West Sussex UKJ28, UKJ27

E10000034 Worcestershire UKG12

1.0
4

3

2

1

0

1.0

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0

home school work

others total

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

55
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

5
1.50

6

4

2

1.25

1.00

0.75

0.50

0.25

0

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 805 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

(a) (b) (c)

(d) (e)

Figure 31. Baseline social contact matrices with 16 age groups. (a) Home, (b) school, (c) work, (d ) other, (e) total.
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Appendix B. Baseline parameters for social contact rates
This appendix outlines the sources used for the baseline social contact rate parameters. In particular, two
sources have been used: the POLYMOD study [41], processed using the methodology of PyRoss [15], and
the BBC Pandemic study [56] is used as a robustness check. It should be noted that these parameters are
used as a baseline, and a further detailed calibration is carried out region by region to account for
heterogeneity of social contact patterns across UK regions. We use estimates for social contact rates
across the 16 age groups (detailed in table 2) given in Mossong et al. [41]:

s¼

1:92 0:81 0:47 0:30 0:49 0:79 0:89 1:07 0:44 0:27 0:35 0:27 0:22 0:15 0:10 0:02
0:78 6:64 1:24 0:58 0:49 0:72 1:09 1:40 1:10 0:36 0:35 0:23 0:35 0:24 0:07 0:23
0:42 1:16 6:85 1:30 0:25 0:37 0:57 1:10 1:18 0:64 0:35 0:35 0:2 0:2 0:17 0:14
0:26 0:52 1:26 6:71 1:24 0:72 0:47 0:87 0:97 0:97 0:52 0:31 0:2 0:26 0:24 0:28
0:43 0:44 0:24 1:26 2:59 1:36 0:84 0:76 0:83 0:93 0:63 0:5 0:31 0:22 0:16 0:17
0:73 0:68 0:38 0:76 1:42 1:83 1:13 0:92 0:9 0:92 0:85 0:72 0:45 0:38 0:18 0:12
0:73 0:93 0:53 0:44 0:79 1:02 1:67 1:27 0:98 0:72 0:7 0:63 0:48 0:27 0:09 0:27
0:79 1:06 0:89 0:74 0:63 0:74 1:12 1:5 1:27 0:86 0:63 0:55 0:53 0:43 0:14 0:31
0:32 0:83 0:97 0:83 0:69 0:73 0:87 1:28 1:35 1:21 0:7 0:55 0:55 0:35 0:33 0:43
0:24 0:32 0:62 0:96 0:91 0:87 0:75 1:02 1:41 1:87 0:75 0:64 0:51 0:26 0:32 0:33
0:34 0:34 0:37 0:57 0:68 0:88 0:81 0:82 0:90 0:82 0:74 0:98 0:46 0:31 0:28 0:76
0:24 0:20 0:35 0:32 0:50 0:69 0:67 0:66 0:66 0:66 0:91 1:17 0:73 0:43 0:20 0:46
0:24 0:40 0:25 0:25 0:38 0:54 0:65 0:80 0:82 0:65 0:53 0:91 0:65 0:55 0:30 0:66
0:19 0:31 0:29 0:39 0:32 0:52 0:42 0:74 0:60 0:39 0:42 0:63 0:64 0:70 0:52 0:20
0:15 0:11 0:28 0:40 0:26 0:29 0:17 0:28 0:66 0:55 0:44 0:34 0:40 0:60 0:59 0:57
0:01 0:18 0:12 0:24 0:14 0:10 0:24 0:32 0:43 0:28 0:60 0:39 0:45 0:12 0:29 0:86

2
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We use the Bayesian hierarchical framework provided by the PyRoss library [40] to decompose contact
rates into ‘work’, ‘home’, ‘school’ and ‘other’ [57]. The results are provided below, and also visualized in
figure 31.

sH ¼

0:48 0:55 0:33 0:13 0:14 0:28 0:41 0:49 0:11 0:07 0:04 0:02 0:01 0:00 0:00 0:00

0:26 0:92 0:52 0:12 0:03 0:17 0:45 0:58 0:32 0:07 0:03 0:01 0:00 0:00 0:00 0:00

0:17 0:54 1:08 0:39 0:04 0:01 0:22 0:59 0:49 0:13 0:04 0:02 0:00 0:01 0:00 0:00

0:09 0:15 0:42 0:98 0:13 0:03 0:06 0:25 0:42 0:21 0:07 0:05 0:01 0:02 0:00 0:00

0:17 0:08 0:07 0:36 0:80 0:21 0:07 0:04 0:16 0:28 0:08 0:09 0:02 0:01 0:00 0:00

0:49 0:30 0:04 0:07 0:13 0:66 0:21 0:03 0:01 0:05 0:17 0:11 0:03 0:00 0:00 0:00

0:32 0:47 0:27 0:08 0:05 0:09 0:64 0:15 0:03 0:00 0:01 0:04 0:02 0:00 0:00 0:00

0:38 0:70 0:56 0:20 0:02 0:01 0:09 0:59 0:15 0:00 0:02 0:01 0:01 0:01 0:00 0:00

0:17 0:52 0:73 0:42 0:07 0:00 0:09 0:19 0:46 0:10 0:02 0:00 0:03 0:01 0:01 0:00

0:13 0:15 0:33 0:71 0:35 0:08 0:01 0:08 0:07 0:53 0:11 0:03 0:01 0:00 0:00 0:01

0:12 0:10 0:18 0:26 0:31 0:07 0:07 0:04 0:08 0:06 0:37 0:13 0:01 0:00 0:00 0:00

0:02 0:01 0:11 0:28 0:23 0:18 0:06 0:02 0:01 0:08 0:09 0:39 0:10 0:00 0:00 0:00

0:02 0:00 0:05 0:03 0:09 0:10 0:11 0:07 0:08 0:02 0:04 0:11 0:48 0:06 0:01 0:00

0:05 0:07 0:11 0:15 0:02 0:01 0:02 0:10 0:22 0:03 0:02 0:05 0:08 0:51 0:05 0:00

0:00 0:02 0:16 0:25 0:01 0:00 0:00 0:00 0:30 0:08 0:03 0:00 0:06 0:14 0:16 0:09

0:02 0:00 0:04 0:00 0:02 0:00 0:04 0:00 0:07 0:05 0:08 0:00 0:00 0:00 0:11 0:27

2
6666666666666666666666666666666664

3
7777777777777777777777777777777775

sS ¼

0:97 0:15 0:01 0:03 0:01 0:09 0:13 0:09 0:04 0:03 0:00 0:00 0:01 0:00 0:00 0:00

0:24 2:35 0:06 0:00 0:02 0:04 0:06 0:06 0:06 0:05 0:04 0:00 0:00 0:00 0:00 0:00

0:00 1:12 2:56 0:12 0:01 0:05 0:04 0:12 0:09 0:07 0:03 0:02 0:01 0:00 0:00 0:00

0:04 0:08 1:17 4:14 0:06 0:12 0:08 0:08 0:07 0:05 0:04 0:03 0:00 0:00 0:00 0:00

0:00 0:13 0:00 0:27 0:23 0:01 0:02 0:03 0:01 0:01 0:01 0:00 0:00 0:00 0:00 0:00

0:11 0:07 0:01 0:00 0:00 0:06 0:04 0:06 0:04 0:03 0:00 0:00 0:00 0:00 0:00 0:00

0:00 0:10 0:01 0:01 0:01 0:00 0:04 0:00 0:02 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:04 0:17 0:07 0:03 0:00 0:02 0:05 0:07 0:07 0:05 0:00 0:01 0:00 0:01 0:00 0:00

0:07 0:10 0:03 0:00 0:04 0:06 0:03 0:06 0:02 0:01 0:01 0:01 0:00 0:00 0:00 0:00

0:02 0:00 0:02 0:21 0:00 0:00 0:05 0:01 0:07 0:05 0:06 0:04 0:01 0:00 0:00 0:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:02 0:00 0:00 0:04 0:00 0:00 0:00 0:00

0:05 0:14 0:05 0:00 0:00 0:00 0:03 0:00 0:15 0:03 0:00 0:08 0:00 0:00 0:00 0:00

0:00 0:13 0:00 0:00 0:02 0:01 0:05 0:11 0:02 0:03 0:01 0:01 0:00 0:00 0:00 0:00

0:00 0:06 0:04 0:00 0:00 0:00 0:04 0:03 0:00 0:00 0:00 0:03 0:00 0:00 0:00 0:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:00 0:00 0:00 0:06 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

2
6666666666666666666666666666666664

3
7777777777777777777777777777777775

sW ¼

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:00 0:00 0:02 0:00 0:00 0:00 0:10 0:00 0:04 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:00 0:00 0:01 1:08 0:87 0:28 0:11 0:28 0:15 0:48 0:32 0:06 0:02 0:00 0:00 0:00

0:00 0:00 0:02 0:44 0:64 0:71 0:56 0:71 0:35 0:37 0:17 0:16 0:02 0:00 0:00 0:00

0:00 0:00 0:01 0:49 0:61 0:84 0:77 0:62 0:95 0:54 0:55 0:09 0:02 0:00 0:00 0:00

0:00 0:00 0:05 0:10 0:59 0:63 0:65 1:05 0:58 0:69 0:27 0:21 0:02 0:00 0:00 0:00

0:00 0:00 0:02 0:33 0:37 0:59 0:54 0:70 0:62 0:66 0:52 0:19 0:01 0:00 0:00 0:00

0:00 0:00 0:01 0:23 0:39 0:53 0:55 0:83 0:88 0:77 0:35 0:25 0:02 0:00 0:00 0:00

0:00 0:00 0:26 0:28 0:39 0:76 0:76 0:68 0:85 1:04 0:42 0:19 0:03 0:00 0:00 0:00

0:00 0:00 0:00 0:00 0:12 0:43 0:47 0:48 0:88 0:52 0:42 0:16 0:05 0:00 0:00 0:00

0:00 0:00 0:01 0:09 0:33 0:36 0:31 0:25 0:29 0:33 0:30 0:14 0:01 0:00 0:00 0:00

0:00 0:00 0:00 0:00 0:03 0:07 0:03 0:09 0:07 0:05 0:06 0:04 0:00 0:00 0:00 0:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

2
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3
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sO ¼

0:26 0:10 0:05 0:13 0:19 0:26 0:19 0:34 0:31 0:07 0:15 0:11 0:06 0:04 0:04 0:01

0:18 0:77 0:13 0:09 0:06 0:22 0:23 0:18 0:26 0:17 0:16 0:06 0:09 0:06 0:04 0:01

0:15 0:35 0:88 0:31 0:09 0:21 0:09 0:17 0:26 0:13 0:11 0:05 0:06 0:02 0:04 0:05

0:04 0:26 0:68 1:67 0:27 0:20 0:16 0:37 0:25 0:21 0:16 0:08 0:06 0:04 0:01 0:00

0:15 0:04 0:18 0:96 0:75 0:37 0:24 0:30 0:16 0:32 0:09 0:14 0:08 0:03 0:02 0:05

0:25 0:09 0:08 0:20 0:99 0:85 0:46 0:27 0:29 0:32 0:20 0:10 0:09 0:05 0:02 0:00

0:16 0:17 0:09 0:18 0:32 0:44 0:67 0:44 0:23 0:23 0:22 0:25 0:10 0:06 0:01 0:02

0:13 0:22 0:10 0:10 0:24 0:30 0:31 0:52 0:51 0:25 0:15 0:20 0:21 0:10 0:11 0:04

0:00 0:25 0:15 0:15 0:27 0:18 0:36 0:35 0:39 0:39 0:24 0:20 0:10 0:02 0:05 0:00

0:00 0:01 0:03 0:13 0:19 0:13 0:17 0:39 0:46 0:56 0:32 0:12 0:16 0:10 0:06 0:06

0:03 0:03 0:10 0:39 0:30 0:48 0:24 0:46 0:41 0:60 0:23 0:29 0:20 0:14 0:12 0:01

0:11 0:06 0:06 0:11 0:36 0:57 0:55 0:46 0:49 0:22 0:46 0:64 0:40 0:20 0:12 0:11

0:00 0:09 0:07 0:03 0:29 0:22 0:28 0:31 0:32 0:27 0:28 0:40 0:26 0:09 0:11 0:08

0:02 0:11 0:06 0:06 0:11 0:49 0:29 0:46 0:42 0:43 0:39 0:52 0:29 0:22 0:14 0:06

0:07 0:03 0:09 0:24 0:51 0:44 0:24 0:14 0:49 0:36 0:34 0:47 0:48 0:55 0:24 0:25

0:00 0:00 0:04 0:11 0:07 0:04 0:13 0:22 0:20 0:41 0:35 0:00 0:47 0:00 0:19 0:47

2
6666666666666666666666666666666664

3
7777777777777777777777777777777775

Note that these baseline values are modulated to reflect regional differences, using the approach
described in §3.
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